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Abstract 

EROS is a capability-based operating system for commodity 
processors which uses a single level storage model. The sin- 
gle level store's persistence is transparent to applications. 
The performance consequences of support for transparent 
persistence and capability-based architectures are generally 
believed to be negative. Surprisingly, the basic operations 
of EROS (such as IPC) are generally comparable in cost to 
similar operations in conventional systems. This is demon- 
strated with a set of microbenchmark measurements of se- 
mantically similar operations in Linux. 

The EROS system achieves its performance by coupling 
well-chosen abstract objects with caching techniques for 
those objects. The objects (processes, nodes, and pages) 
are well-supported by conventional hardware, reducing the 
overhead of capabilities. Software-managed caching tech- 
niques for these objects reduce the cost of persistence. The 
resulting performance suggests that composing protected 
subsystems may be less costly than commonly believed. 

1 Introduction 

EROS is a capability-based microkernel with a single-level 
storage model. The single-level store's persistence is trans- 
parent to applications. Storage allocation, scheduling, and 
fault handling policies are exported from the kernel to allow 
multiple operating environments and application customized 
resource management. To simplify security assurance, all 
code having either direct access to the hardware or the ability 
to directly transform the system's security state is collected 
in the kernel. Bottom-half device drivers and the single-level 
store are therefore implemented within the kernel. 

1.1 History of EROS 
EROS is the third implementation of the GNOSIS (later 
renamed KeyKOS) architecture [15] created by TymShare, 
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Inc. First deployed in 1982, the goal of GNOSIS was to 
support secure time sharing and controlled collaboration 
among mutually adversarial users. The first GNOSIS ker- 
nel (later renamed KeyKOS/370) was implemented in 370 
assembler language, with application code in PL/1. This 
system ran VISA transaction processing and networking ap- 
plications. In the late 1980s the kernel and selected com- 
ponents were reimplemented in C for the Motorola 88000 
family (KeyKOS/88k). Development ceased in 1991 when 
the company closed. The EROS project started shortly there- 
after as a clean-room reimplementation of the GNOSIS ar- 
chitecture in C++, and has since made minor enhancements 
to the architecture. EROS for the x86 may be obtained from 
the EROS web site [41]. 

1.2 Components and capabilities 
Large-scale software architectures are evolving (e.g., 
CORBA), in which applications can be viewed as capability 
connected components. This suggests that the study of capa- 
bility systems is of increasing importance, since by design, 
capability systems provide support for protected subsystems, 
non-hierarchical protection domains, and typed objects [26]. 

Experience with systems such as the IBM AS/400 [47] 
(a.k.a. System 38), the Plessey System 250 [19, 29], and 
KeyKOS [22] suggests that reliability and security can be 
improved at both application and system levels if objects are 
separated into distinct protected subsystems to provide both 
fault isolation and discretionary access control. Language- 
based approaches to enforcing protected subsystems have 
proven difficult to implement [54], and require expensive 
conversion of existing applications to the new language. An 
OS-based solution, possibly augmented by language level 
mechanisms, is therefore preferable. 

However, the desirable features of transparent persis- 
tence and capability-based protection are widely believed to 
have prohibitive performance. This belief is largely justified 
by experience. The performance issues of the i432 have been 
examined by C01well [7], and those of Mach by Ford [14]. 
While the IBM AS/400 [47] (a.k.a. System 38) has been a 
large-scale commercial success, its performance depends on 
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an augmented processor instruction set and a tagged memory 
system. 

1.3 EROS and what we show in this paper 
This paper presents the EROS architecture, and describes 
an efficient reduction to practice of this architecture for a 
commodity processor family: Intel's Pentium[23]. We dis- 
cuss the impact of persistence on the system's design in both 
structure and complexity. The EROS design and implemen- 
tation applies the architectural ideas of  microkernels to ob- 
tain performance in a system that is secure, capability-based, 
and transparently persistent. 

We evaluate the performance of the resulting system 
using microbenchmarks. While the microbenchmarks cur- 
rently available for EROS do not support general con- 
clusions about application performance, they suggest that 
EROS will achieve reasonable performance on end user ap- 
plications. The results suggest that capabilities are a reason- 
able substrate for a high-performance, high-security system 
on commodity hardware. 

2 Capabilities 

A capability is an unforgeable pair made up of an object 
identifier and a set of authorized operations (an interface) on 
that object [9]. UNIX file descriptors [51], for example, are 
capabilities. 

In a capability system, each process holds capabilities, 
and can perform those operations authorized by its capabili- 
ties. Security is assured by three properties: 

1. capabilities are unforgeable and tamper proof, 
2. processes are able to obtain capabilities only by using 

authorized interfaces, and 
3. capabilities are only given to processes that are autho- 

rized to hold them. 

A protection domain is the set of capabilities accessible 
to a subsystem. An essential idea of capability-based system 
design is that both applications and operating system should 
be divided into cleanly separated components, each of which 
resides in its own protection domain. 

Subject to constraint by an external reference monitor 
(Figure 1), capabilities may be transferred from one protec- 
tion domain to another and may be written to objects in the 
persistent store. Access rights, in addition to data, can there- 
fore be saved for use across instantiations of one or more 
programs. 

2.1 Implications for persistence 
When persistent objects are permitted to contain capabilities, 
they take on certain characteristics of file metadata. In con- 
ventional file systems, correct stabilization of files depends 
on the order of data and metadata writes: data must be writ- 
ten before the metadata that references it [18]. Similarly, 
objects in a capability system must be written before the ca- 
pabilities that reference those objects. Unlike a file system, 

however, the update dependency graph in a capability sys- 
tem is unconstrained (and potentially circular). 

Plausible mechanisms to ensure a consistent system im- 
age in the store include application-managed transactions or 
some form of periodic consistent snapshot of the machine 
state. For reasons of simplicity and correctness, EROS uses 
a periodic checkpoint similar to the KeyKOS mechanism de- 
scribed by Landau [28]. 

2.2 Design challenges 
There are five key challenges in architecting a capability sys- 
tem. 

First, transferring control across protection domain 
boundaries is expensive unless great care is taken in im- 
plementing protected control transfers. By default, no ac- 
cess should be shared across such a boundary. In a con- 
ventional architecture, this requires that the preceding con- 
text (the TLB and cache contents) be made unreachable by 
means of hardware tagging, cache flush, or other hardware- 
enforced means of isolation. Strategies for performing effi- 
cient context switch have been developed [30, 32], and we 
have applied these ideas for protection domain crossings and 
presented the results in [44]. 

Second, we would like a uniform protection mechanism 
for all system resources. Choosing primitive protected ob- 
jects and access rights that reduce directly to the hardware 
with minimal overhead is critical. If  too large a unit of pro- 
tection (e.g., memory regions) is selected, as in Mach [1], 
software is required to translate this abstraction into some- 
thing that the hardware can implement. If too small a unit 
of protection (e.g. words) is used, the hardware protection 
mechanisms cannot be used directly and protection must be 
realized by software emulation. 

Third, a collection of system services must be identified 
that compose these primitive objects into higher level ab- 
stractions efficiently and securely. 

Fourth, the system must ensure that a correct initial ar- 
rangement of entities and access relationships is achieved 
when the system starts up. In particular, the correctness of 
this arrangement must be maintained at the stable storage 
boundary. Many capability systems use conventional file 
systems protected by access control lists. In doing so they 
give up the security advantages of capabilities. 

Finally, capability systems have difficulty with traceabil- 
ity and selective revocation: determining who has what ac- 
cess and removing a particular user's access to an object. To 
solve this problem, hybrid designs using both capabilities 
and access control lists have been proposed in [4] and [25]. 
In a pure capability system like EROS, this issue must be 
addressed by the reference monitor. 

2.3 Mandatory access controls 
EROS provides a primitive mechanism for revoking access 
to objects. Both objects and their capabilities have a version 
number. If  the version numbers do not match, the capability 
is invalid and conveys no authority. Mandatory access con- 
trol (MAC) policies require a finer mechanism: one that pro- 
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vides selective revocation and access traceability. The EROS 
constructor (Section 5.3) enforces a discretionary policy [46] 
similar to Lampson's confinement policy [27]. This policy 
allows secure reference monitors to be built at user level, as 
has been done in KeySafe [38]. 

. _ . 0  . _ .  ] ~)-, t ~ 8 ;  ]['--]Compartment 
t o I t 0 _ , , I . . . .  
' ,_9; ',9_°; o . ,o, o <99] ( Sandbox 

User-level Reference Monitor I 0 Process 

Kernel I 

Figure 1. Components within compartments 

The KeySafe design divides a secure system into pro- 
tected compartments (Figure 1). Communication between 
these compartments is mediated by a reference monitor, 
which inserts transparent forwarding objects in front of all 
capabilities that cross compartment boundaries. To rescind 
the access rights of a compartment, the reference monitor 
rescinds the forwarding object. 

A particularly attractive aspect of the KeySafe design is 
that it allows straightforward revision of mandatory access 
policies. Appropriate mandatory access control policies de- 
pend on the objects controlled, and are therefore application 
dependent. The KeySafe design facilitates modification of 
the mandatory access controls as the system evolves. 

Evaluators spent several months in 1986 examining 
KeyKOS/KeySAFE, and encouraged its submission for B2 
evaluation [53]. The B2 security requirements specifically 
cover both traceability and revocation, and the NCSC team 
felt that the KeySafe design was sound. 

3 The EROS kernel 

The EROS architecture is divided into a kernel that imple- 
ments a small number of  primitive capability types: num- 
bers, nodes, data pages, capability pages, processes, entry 
and resume capabilities, and a few miscellaneous kernel ser- 
vices. These are described in this section. The architecture 
also includes a collection of system services that are imple- 
mented by non-privileged applications. These services pro- 
vide higher-level abstractions such as files, directories, and 
memory objects. 

The kernel presents a fairly direct virtualization of the 
underlying hardware via capability-protected abstractions. 
Both data and capabilities are stored inpages, whose size is 
dictated by the underlying hardware. Capabilities are also 
stored in nodes. Nodes hold 32 capabilities, and serve a 
function equivalent to metadata in conventional systems. All 
state visible to applications is stored in pages and nodes. 

The kernel enforces a partition between data and capa- 
bilities by tagging. Data can be read/written only to data 
pages and capabilities to capability pages. A capability page 
is never mapped in such a way that access is permitted from 
user mode programs. Capability load and store instructions 

are emulated in supervisor software, and check the per-page 
type tag. 

The kernel also implements LRU paging and the dis- 
patch portion of a scheduler based on capacity reserves [35]. 
As these ideas are not new, they are not discussed further in 
this paper. 

3.1 Address translation 
Like other recent microkernels, EROS views an address 
space as a set of mappings of the form: 

vpage ~ ppage x {r, w} × handler 

where handler is an entry capability to a process (Sec- 
tion 3.2). When an addressing exception occurs, the fault 
handler may either alter the structure of the address space 
and restart the process or pass the fault to the process fault 
handler for further handling. 

The EROS kernel captures address space mappings in 
machine-independent fashion using nodes.1 Address spaces 
are formed by building a tree of nodes whose leaves are 
data or capability pages. Each node contains 32 capabilities, 
which may point to either nodes or to pages (Figure 2). Node 
capabilities encode the height of the tree that they name, en- 
abling short-circuit traversal similar to that of the MC68851 
[36], and avoiding the need for tall translation trees. 

~ apablity 

node Page Capability 1--'o LI till II II NullCapability 
I I Node Capability 

[qqqTff~ Entry Capability node 

o o itltiTiir E    l 

Pages 

Figure 2. EROS memory tree 

Every EROS process includes a capability that names the 
root of its address space tree. The mapping described by this 
tree is translated on demand into the representation required 
by the underlying hardware. When a page fault occurs, the 
EROS kernel first attempts to traverse the address space tree 
to establish a valid mapping, performing any necessary ob- 
ject faults to load pages and nodes from the disk. If a valid 
mapping is found, this mapping is installed in the hardware 

i To those familiar with earlier capability systems, a node may be thought 
of as a fixed-size c-list [29]. 
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mapping table and the operation is restarted. Otherwise, the 
fault is reflected using an upcall to a user-level fault han- 
dler specified by the address space (if present) or the process 
(otherwise). 

Using a tree of  nodes rather than page tables to describe 
address space mappings permits relatively fine-grain speci- 
fication of  fault handlers (Figure 2). Information about fault 
handlers is stored in the node-based mapping tree, but is not 
directly captured by the hardware mapping tables. 

3.2 Processes 
EROS process state includes the user-mode registers of  the 
underlying processor, including the user-accessible portion 
of  the processor status word. In addition, each process has a 
capability register set implemented by the kernel. The capa- 
bility registers contain those capabilities that the process can 
directly invoke. 

The kernel exports the process abstraction to applica- 
tion code via two types of  capabilities: process capabilities, 
which provide operations to manipulate the process itself, 
and entry capabilities, which allow the holder to invoke the 
services provided by a program within a particular process. 

Because EROS is a persistent system, all process state 
must ultimately reside in structures that can be stored to disk. 
In EROS, these structures are pages and nodes. Process state 
is recorded using nodes (Figure 3). Data register values are 
stored to the node using number capabilities, which name 
an unsigned value and implement read operations. 

Process Root 
0 ~  

(To Address Space) 

Any Capability 
I [ Number Capability 

Node Capability 
Capability Registers 

31 

(Always Zero) 

Registers Annex 
[T~-fT[qqqqqqT~ 31 

Figure 3. Process structure 

EROS makes no distinction between processes and 
threads. All processes are single-threaded. Two processes 
may share an address space; each of  these processes can 
hold distinct capabilities. Multithreaded services are imple- 
mented by having several processes that share a common ad- 
dress space. Most of  these processes serve as worker threads. 
A distinguished process publishes the externally visible en- 
try point to the service. This process accepts requests and 
forwards them to the worker processes. 2 

In EROS, each process is a protection domain. Ap- 
plications are designed as multiple cooperating processes. 
Application-transparent persistence ensures that consistency 

between processes is preserved across system restarts. Be- 
cause the arrangement and consistency of  these processes is 
not lost in the event of  a system crash, the associated inter- 
process relationships need not be reconstructed every time 
the application is accessed. 

3.3 Capability invocation 
All resource access in EROS is ultimately performed by ca- 
pability invocat ion)  I f  authorized by the capability, each 
invocation causes the named object to perform some object- 
defined operation specified by the invoker. Even memory 
accesses performed by load and store instructions may be 
modeled as an efficiently cached capability invocation. The 
semantics of  memory  reference is therefore covered by the 
capability semantics. Capabilities are used to invoke both 
kernel implemented services (pages, nodes, processes, num- 
bers) and services or objects implemented by user processes. 
Process-implemented services are implemented using a "re- 
ply and wait" loop; if the service is not available at the time 
of  the call, the caller blocks until the service becomes avail- 
able. 

Capability invocations transmit a small number of  data 
registers (4), a contiguous data string, and a small number 
of  capability registers (4). I f  desired, the sender can cause a 
distinguished entry capability called a resume capability to 
replace the last capability argument. The resume capability 
enables the recipient to reply to the sender. 

All copies of  a resume capability are efficiently con- 
sumed when any copy is invoked, ensuring an "at most once" 
reply. Manifesting the callers continuation as a capability in- 
stead of  using an implicit stack allows non-hierarchical inter- 
process control flow, which is useful for thread dispatching. 
Distinguishing start and resume capabilities (and the asso- 
ciated process states) also allows applications to construct 
an implicit mutex around extended co-routine interactions 
by invoking an existing resume capability and generating a 
new resume capability with each interprocess control trans- 
fer. This mechanism is sometimes used to ensure that ex- 
tended string transfers are not interrupted by other invoca- 
tions. 

Since entry capability invocations (including resume ca- 
pabilities) are very common,  EROS includes a fast interpro- 
cess communication (IPC) mechanism described in [43] and 
[44]. Although the implementation reported here has not 
been carefully optimized, earlier implementations have ex- 
actly matched the performance of  L4's  IPC primitive [44]. 

An unusual aspect of  the architecture is that capability 
invocation is the only "system call" implemented by the ker- 
nel. Because there are no other system calls, all actions taken 
by a process are implicitly access checked. Objects imple- 

20rran Krieger has noted that this implementation has unfortunate pro- 
cessor locality implications on large SMP systems. A planned kernel- 
implemented dispatcher object will address this. 

3 For emulation of other operating systems, the authority to explicitly in- 
voke capabilities can be disabled by a per-process mode bit. If capability 
invocations are disabled, the invocation trap instruction is treated as a 
conventional exception and reflected via upcall to the per-process fault 
handler. 
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mented by the kernel are accessed by invoking their capabil- 
ities. All capabilities take the same arguments at the trap in- 
terface. In consequence, processes implementing either me- 
diation or request logging can be transparently interposed in 
front of  most objects. In particular, mandatory access con- 
trol across confined subsystems can be enforced using either 
indirection using the kernel-implemented indirector object 
or simulation by a transparently interposed filter process, as 
in KeySafe [38]. 

3.4 Limiting access propagation 
Capability systems permit capabilities to be transferred over 
authorized channels. As a result, security arguments must 
consider both the propagation of information and the propa- 
gation of access rights. Capability access rights can be sur- 
prisingly powerful; a read-only capability to a node permits 
a read-write capability residing in that node to be extracted, 
which in turn allows other data structures to be modified. 

The EROS architecture uses two mechanisms to address 
this issue: the weak access right and access indirection. 

Weak access is similar to read-only access, except that 
capabilities fetched via a weak capability are diminished in 
authority so as to be both read-only and weak. The net effect 
is that transitive read-only access is ensured. The default 
copy-on-write pager implementation described in Section 5, 
for example, remains in the "trusted computing base" for 
reasons of integrity, but is unable to leak information be- 
cause it holds only a weak capability to the original mem- 
ory object. The EROS weak access right is a generaliza- 
tion of the KeyKOS sense capability [22]; sense capabilities 
are read-only, weak capabilities need not be. A write via 
a weak capability stores a diminished (i.e. read-only and 
weak) form of the stored capability. 

Access indirection can be used to implement selective 
revocation. When sensitive capabilities are granted by a ref- 
erence monitor, the monitor can either transparently forward 
requests on those capabilities or supply an indirection object 
in place of  the real capability. Access can later be revoked 
by destroying the indirection object. 

3.5 Checkpointing and persistence 
The correctness of the EROS operating system relies on the 
fact that all operations performed by the kernel result in a 
correct system state so long as the initial state was correct. 
The legality of an operation depends on the state of the sys- 
tem, which in turn depends on previous operations. This 
implies that causal order of operations must be maintained. 

The challenge in causal ordering lies in ensuring that a 
correct system state is recovered when an unplanned shut 
down occurs (i.e., a crash). To achieve this, the kernel must 
periodically arrange for a consistent image to be saved with- 
out application support, and without unduly intruding on ap- 
plication performance. The difficulty lies in ensuring that the 
image written to the disk is correct; once committed, a bad 
checkpoint cannot be undone. The EROS implementation 
guarantees that a correct state exists on the disk by means of 

a transparent persistence mechanism evolved from KeyKOS 
[28]. 

3.5.1 Snapshot 
As in KeyKOS, the EROS implementation takes a pe- 

riodic snapshot of the entire machine. This state is writ- 
ten to the disk asynchronously. On restart the system pro- 
ceeds from the previously saved system image. Because the 
checkpointed image is globally consistent, causal ordering is 
maintained. 4 

The snapshot mechanism introduces minimal disruption 
of execution. While all processes are halted during the snap- 
shot, this phase performs a consistency check and marks all 
objects copy-on-write (even to the kernel). Care is taken by 
the snapshot procedure to ensure that capabilities remain in 
their optimized form (Section 4.1). Memory mappings must 
be marked read-only to support the kernel copy-on-write im- 
plementation, but the mapping structures are not dismantled 
as a side effect of checkpointing. 

An important difference between the snapshot mecha- 
nism of EROS (and KeyKOS) and those of L3 [31] or Fluke 
[52] is that the EROS snapshot mechanism performs a con- 
sistency check before the snapshot is taken. Critical kernel 
data structures are checked to ensure that their pointers point 
to objects of appropriate type, allegedly read-only objects in 
the object cache are checksummed to verify that they have 
not changed, every modified object must have an entry in the 
in-core checkpoint directory, and the types of capabilities in 
process slots are checked. If any of these checks fail, the sys- 
tem is rebooted without committing the current checkpoint. 

Once committed, an inconsistent checkpoint lives for- 
ever. Aside from errors that have occurred while debugging 
the stabilization code itself, neither KeyKOS nor EROS has 
been observed to write an inconsistent checkpoint in sev- 
enteen calendar years of operation. The check procedure 
in EROS has caught innumerable bugs in the implementa- 
tion, including several obscure boundary conditions and a 
number of stray pointer errors. This proved sufficiently use- 
ful that EROS now performs these checks continuously as a 
low-priority background task. 

In the current implementation, the duration of the snap- 
shot phase is a function of physical memory size. On sys- 
tems with 256 megabytes of physical memory the snapshot 
takes less than 50 ms to perform. This time includes execu- 
tion of the system sanity checker described above. A more 
incremental design would use copy-on-write techniques to 
implement the snapshot itself. This would make the snap- 
shot phase solely a function of the process table size (Sec- 
tion 4.3), which should reduce the synchronous phase to 
roughly a millisecond. 

4 A joumaling mechanism (also described in [28]) may be used by 
databases to ensure that committed state does not roll back. The jour- 
naling operation violates causal ordering, but is restricted to data objects. 
Because journaling does not violate the causal ordering of protection 
state, it does not violate the protection model. 
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3.5.2 Stabilization 
Once a snapshot has been captured, the state is written 

to the disk asynchronously. To avoid checkpoint-induced 
delays, stabilization must complete before the next check- 
point, which is typically set at 5 minute intervals. To prevent 
overrun when applications perform unusually large numbers 
of object mutations, a checkpoint is also forced when 65% 
of the total checkpoint area has been allocated to the current 
checkpoint. Experience with the KeyKOS design [28] sug- 
gests that this design can scale in memory capacity with the 
bandwidth of available I/O channels. 

3.5.3 Bootstrap and installation 
The checkpoint mechanism is used both for startup and 

for installation. In EROS, an initial system disk image is 
compiled using a cross compilation environment. The im- 
age generation tools link processes by capabilities in much 
the way that a conventional link editor performs relocation 
as it builds a binary image. The resulting checkpoint area 
contains a list of running processes that should be (re)started 
when the system resumes. 

While installation tools are not yet implemented, the 
built-in checkpoint and replication mechanisms make this 
straightforward. The program on the installation diskette 
formats new ranges on the hard disk corresponding to those 
on the floppy and mounts them. Because they match existing 
ranges (the ones on the floppy) but have old sequence num- 
bers, the kernel recovers the "stale" range by sequentially 
marking all objects in the newly duplexed range "dirty" and 
allowing the replication logic to rewrite them to both repli- 
cates. 5 The installation tool simply waits for mirror recovery 
to complete and forces a checkpoint. The end result is that 
the image on the hard disk is now a valid bootable image. 
This mechanism is considerably simpler than the "big bang" 
used in KeyKOS installation [22]. 

3.5.4 Supporting design rules 
Checkpointing is facilitated by two kernel design rules: 

• All state resides in pages and nodes. 
• All kernel operations are atomic. 6 

Much of the EROS design is predicated on the first restric- 
tion, which limits the number of disk object types that must 
be managed by the persistence subsystem. With the sole ex- 
ception of the list of stalled processes, this objective is actu- 
ally satisfied by the current implementation; the EROS ker- 
nel owns no state. Restricting the number of data types at 
this level also reduces the number of storage allocators that 
must be managed by the implementation. 

The atomicity rule is a corollary of the pages and nodes 
requirement. When a kernel invocation must stall, as when 
waiting for page I/O, a small, in-kernel "thread" structure 
containing a capability to the stalled process is queued on the 
in-kernel stall queue. The invoker's program counter is ad- 
justed to retry the invocation when awakened. This design is 
similar to that adopted in Fluke [12] and MIT's  ITS system 
[10, 3], and simplifies checkpointing, as checkpointed ker- 
nel state requires special handling by the checkpoint mech- 

anism. In the current implementation, the only kernel state 
that must be checkpointed is the table of stall queue struc- 
tures. The stall queue structures are also the only kernel re- 
source that can be exhausted by action of applications. 

While it is not presently implemented, such exhaus- 
tion can be managed by a trusted decongester application. 
When stall queue structures are oversubscribed, the kernel 
constructs fault capabilities (a specialized resume capability 
used by user-level fault handlers to restart a faulted process 
without changing its state) to the lowest priority processes 
and passes these fault capabilities to the decongester appli- 
cation for later resumption. 

4 Implementation 

This section describes how the abstractions of Section 3 are 
mapped to conventional hardware mechanisms. 

The definitive representation for all EROS objects is the 
one that resides in pages and nodes on the disk. Pages and 
nodes are cached at two levels of abstraction by the EROS 
kernel (Figure 4). The first level is for efficient access by the 
processor. The second level is simply an object cache, which 
is a fully associative, write-back cache of the on-disk ob- 
jects. Address translation causes the contents of some nodes 
to be cached in hardware mapping tables. Process invocation 
causes other nodes to be cached in the process table. The 
process table is managed as a write-back cache that sits in 
front of the object cache. Hardware mapping structures are 
treated as read-only. Both are flushed when the capabilities 
they cache are invalidated. 

First PrTCb~S; 

Level Prepa!ation~ ~Aging ] StPmagcit~rges 

~Page Faults 
SLeCv°e~d t Object Cache , [ 

Checkpoint/ ~ Object Faults Pageout t /Migration~ 
Store Permanent I Checkp°int I Permanent J Log Store 

Figure 4. Layered caching. Arrow labels indicate the 
operations that induce load and flush of each cache. 

Use of software caching at multiple levels of the system 
means that the representation of performance-critical data 
structures should be easily customizable to the processor ar- 
chitecture. Also, performance-critical portions of the imple- 
mentation are free to use either the machine specific or the 
machine independent representation. In several cases, a hy- 
brid approach has been used to improve performance. Fast 
paths use the machine-specific form, and are backed by a 
general path using the machine independent structures. 

5 Replication is currently implemented; mirror recovery is not. 
6 We exclude observability of data mutation from our definition of atomic- 

ity, which is necessary in multiprocessor implementations. The essential 
point is that access right updates be atomic. 
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4.1 Capabilities and object loading 
An object capability logically contains a 64-bit unique ob- 
ject identifier for a node or page, a 32-bit version number, 
and a type field. In the Pentium implementation, each capa- 
bility occupies 32 bytes. Every node and page has a version 
number; if the capability version and the object version do 
not match the capability is invalid. Nodes additionally carry 
a 32-bit "call count", giving a total node size of 528 bytes. 
Discussion of call counts has been omitted for lack of space, 
and may be found in [45]. 

As stored on the disk, an object capability actually con- 
tains the unique object identifier and version number. The 
first time a capability is used, it is prepared. The object 
it names is brought into memory and the capability is con- 
verted into optimized form (Figure 5). All optimized capa- 
bilities point directly to the object that they name, and are 
placed on a linked list rooted at the object. 

Type Aux-Info i 
I 

Object Ptr I Node, Page, 
~ L orProcess 

A' A ' I 
I I I I 

Figure 5. Prepared capability 

Preparing a capability also causes the target object to be 
prepared for use. For node and page capabilities, prepara- 
tion forces the named object into memory. For process re- 
lated capabilities, preparing the capability brings in the as- 
sociated nodes and loads the process into the process table 
(Section 4.3). 

Preparing a capability is one of two operations that 
causes objects to be converted into hardware specific rep- 
resentations. The other is address translation. 

4.2 Address translation 
An EROS address space is defined by a tree of nodes. Each 
node must be obtained from a storage manager. The space 
occupied by mapping structures is therefore fully accounted 
for. 

The node-based address map must be converted into 
page table entries to be used by the hardware's MMU. As 
address exceptions occur, a lazy translation of the state in the 
node tree into page table entries is performed. The resulting 
hardware mapping entries are managed as a read-only cache 
of state that resides in the node trees. 

A simple implementation would perform address trans- 
lation by traversing the node tree, generating a mapping, and 
updating the page tables. To facilitate invalidation when the 
node slots are modified, it must record a mapping from ca- 
pability addresses to the generated page table entries (the 
depend table). 

There are two issues with this implementation: 

• Full traversals are expensive. The node tree contains 
information stored in capabilities. A fair amount of 
data driven control flow is required to decode this in- 
formation. 

• The naive design does not leverage shared mapping ta- 
bles on architectures that support them. 

The following sections describe how this implementa- 
tion is optimized. 

4.2.1 Reducing traversal cost 
The Pentium family uses a two-level hierarchical transla- 

tion table. EROS also uses a hierarchical mapping architec- 
ture; a correspondence can be established between the two 
mapping hierarchies (Figure 6). Since nodes contain 32 en- 
tries, and Pentium mapping tables contain 1024 entries, two 
node levels are used to describe each of the Pentium map- 
ping table levels. Wherever a valid mapping exists in the 
hardware page tables, this mapping agrees with the mapping 
in the node tree. The address translation algorithm exploits 
this correspondence, 

...... : :  I I' _DJ >[pll 
................ >l p0 I 
Page Table Page 

Figure 6. Memory translation for hierarchical MMU 

In Figure 6, given a successful translation of page p0, a 
subsequent translation fault on p l  or p2 must also traverse 
nodes A and/3.  Because a valid hardware mapping entry 
exists in the page directory, the hardware mapping may be 
used instead provided that there exists some means to dis- 
cover that node C' corresponds to the page table. 

Every core page frame has an associated bookkeeping 
structure containing various information about the frame. 
For page frames that contain mapping tables, this informa- 
tion includes a pointer to the producer of that mapping table. 
The producer is that node in the mapping tree such that (a) 
its span in pages is less than or equal to that of the map- 
ping table rounded up to the nearest power of 32 and (b) it 
has the largest span of the candidate nodes under rule (a). 
That is, we are looking for a node whose span is no larger 
than that of the corresponding mapping table. The rounding 
complication addresses the situation in which the hardware 
mapping table spans are not an integer power of the node 
spans. It is not relevant to the Pentium family. 

In Figure 6, node A is the producer of the page direc- 
tory, and node C is the producer of the page table. If  p0 has 
been successfully translated, a subsequent translation fault 
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on p l  proceeds as follows. The high order bits of the vir- 
tual address are used to locate the page directory entry. This 
entry points to the physical address of the page table, which 
was constructed when p0 was translated. Translation now 
attempts to use the low order bits of the virtual page address 
to traverse the page table. It locates the page table entry and 
finds that it is invalid. It then looks in the per-frame book- 
keeping structure associated with the page table frame to find 
the producer of the page table, which is node C. Traversal 
now proceeds through nodes C and D in the node tree, re- 
sulting in a valid page table entry. 

The producer optimization means that the majority of  
page faults traverse only two layers of the node tree, which 
cuts the average translation cost in half. This is particularly 
important for fault handling, where at least part of the traver- 
sal must be done to identify the target fault handler. Producer 
tracking also means that page tables can be reclaimed by first 
locating their producer, then locating all valid in-memory ca- 
pabilities to that producer by traversing the capability chain, 
and then invalidating all page tables associated with the ad- 
dresses of the node slots (the array entries) containing those 
capabilities. 

4.2.2 Shared mapping tables 
Every producer has an associated list of products, which 

is the list of page tables constructed from that producer. A 
producer may have multiple products if a short-circuited tree 
has been constructed. If  an address space is described by a 
single node, the node will be the producer of the page table, 
the read-only page directory, and the read-write page direc- 
tory. A producer may also have multiple products if pro- 
tection bits are not provided at some level of the translation 
tree. On the Pentium, the address space register does not im- 
plement a write protection, so both read-only and read-write 
versions of the page directory must be constructed follow- 
ing a checkpoint to ensure that copy-on-write occurs while 
stabilization is in progress. 

The product chain is used to ensure that page tables are 
shared where possible (Figure 7). If either process has suc- 
cessfully translated p0, p l ,  or p2, then a page table corre- 
sponding to nodes E,  F ,  and G has been created and placed 
on the product chain of node E. When the other process first 
references any of these pages, the translation logic will find 
an invalid entry in its page directory. It will then locate the 
producer for the page directory (either A or C), and traverse 
the upper portion of the node tree (either A :: /3 or C :: D). 
In either case, it will discover that node E is at a height cor- 
responding to a page table, and check the product list of E 
to see if a page table with appropriate permission constraints 
already exists. Finding the page table created by the previ- 
ous successful translation, it will reuse this page table rather 
than create a new one. 

4.2.3 No inverted page tables 
Before a page or page table can be removed, all mapping 

structures referencing that object must be invalidated. Con- 
ventional implementations must maintain a mapping from 
pages to page table entries (an inverted page table) to ac- 
complish this. 

P~oc0 iage~rectory ...... ,,z i I I  t -I FI Page 

Node ~1 pO 
~ i ~ "  I ! . . . . . . . . . . . . . .  :i Page'T'at;le" . . . . . . . . . .  Page 

Proc I ! : 

: Node : 

Page Directory 
for C::D 

Figure 7. Sharing mapping tables 

In EROS, an inverted page table is rendered unnecessary 
by the capability link chains (Figure 5). If  the object to be re- 
moved is a page, its prepared capabilities must be traversed 
to convert them back to unoptimized (i.e., on-disk) form. As 
these capabilities are traversed for conversion, the previously 
recorded depend table entries are used to invalidate the page 
table entries that point to the page. If  the hardware map- 
ping architecture is hierarchical, the slots in each address 
space node correspond to a contiguous region in each of the 
produced page tables, so only one depend table entry is re- 
quired per (node, page table) pair. Because of the capability 
link chain, a per-page entry is required only in the case of a 
single-page address space (i.e. one with no nodes). 

If  the object to be removed is a page table, matters are 
slightly more involved. Note that the producer of the page 
table spans all of the valid portion of the page table. It fol- 
lows that the capabilities that name the producer dominate 
the page table entries that point to the page table. Before 
removing a page table, it suffices to traverse the capability 
chain of its producer and invalidate the associated depend 
table entries. 

4.2.4 Small spaces 
Liedtke has shown that creative combinations of seg- 

mentation and virtual address translation can yield dramatic 
performance benefits on some classes of hardware [32]. In 
such designs, the virtual address space is divided into a sin- 
gle "large space," a universally mapped kernel region, and 
some number of "small spaces." Boundaries between these 
spaces are enforced using segmentation rather than page pro- 
tection. 

In effect, this technique uses the segment registers to 
prepend tag bits to the virtual address. No TLB flush is 
necessary in control transfers between small spaces. Sim- 
ilarly, no TLB flush is needed when transferring to a large 
space if that large space is the "current" large space. A flush 
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is required only when the current large space changes or a 
mapping entry is forcibly invalidated. 

Small spaces have a disproportionate impact on the per- 
formance of an EROS system. The most critical operat- 
ing system service applications fit comfortably in less than 
128 KB, and these objects are accessed with high frequency. 
In particular, all of the address space fault handlers currently 
included in the system run as small spaces, which halves the 
number of address space switches required to handle a page 
fault. 

4.3 Processes 
In EROS, the majority of capability invocations are 1PC op- 
erations, whose performance depends critically on the low- 
level process representation. Software caching is used to 
convert the process structure of Figure 3 to and from a repre- 
sentation optimized for efficient register save and trap han- 
dling. 

4.3.1 The process cache 
The kernel maintains a boot-time allocated process ta- 

ble. Unlike conventional kernel architectures, this process 
table is a cache. As with other objects, the loading of pro- 
cess table entries is driven by capability preparation. When 
process A first invokes a capability to process/3, the capa- 
bility is prepared. As a side effect, a process table entry is 
allocated and the state of process 13 is loaded into this en- 
try. When a process blocks, a structure containing a process 
capability to that process is placed on some queue by the 
kernel. This queue structure is the only information about 
the process that must remain in memory while the process 
is stalled. Processes that are ready to execute are queued on 
the ready queue. When the stalled processes are awakened, 
this process capability is prepared, forcing the process back 
into the process table. 

Process table writeback occurs either when an entry in 
the table is reallocated or when a checkpoint occurs. In ei- 
ther case, all capabilities to the unloaded process are depre- 
pared, restoring them to their disk representation. As pro- 
cesses are restarted following the checkpoint, they are incre- 
mentally reloaded into the process table. This in turn causes 
the process' constituent nodes (Figure 3) to be marked 
"dirty" in preparation for modification. When a checkpoint 
is in progress, copy on write is used to ensure that the snap- 
shotted version of the state associated with active processes 
remains unmodified until it has been stabilized. 

4.3.2 The save area 
The Pentium architecture saves state to a kernel stack 

when a trap occurs. Rather than copy this state, the EROS 
kernel arranges for the kernel stack pointer to point directly 
into the per-process save area (Figure 8). The hardware trap 
mechanism spills the trap state directly into the process table 
entry for the active process. 

Control is assumed by the trap handler, which completes 
the register save, loads kernel segments, adjusts the stack 
pointer to point to the true kernel stack, and transfers control 

to the kernel. EROS is an "interrupt style" kernel. When a 
process is suspended in the kernel it is forced to restart at the 
trap instruction; there is no per-process kernel stack. 

KSP 
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Figure 8. Save area 

A Pentium implementation challenges register save de- 
sign. The saved state has an irregular format (the e r ror  field 
is not consistently saved) and is not self describing (the trap 
number is not made easily available by the hardware). Thus, 
every hardware interrupt and exception has its own kernel 
entry point. This entry point appends the error value if nec- 
essary and inserts an identifying trap number onto the stack; 
it then branches to a common interrupt handler. Register 
save is further complicated by the fact that the processor may 
be in either "Virtual 8086" mode or protected mode when 
the interrupt occurs. EROS supports both modes. The state 
saved to the kernel stack differs according to mode. The ker- 
nel therefore keeps track of which mode the application is in 
and adjusts the kernel save area pointer accordingly before 
dispatching the process. 

4.4 Capability invocation 
Capability invocations divide into two cases: fast path inter- 
process invocation and the general invocation mechanism. 

The interprocess invocation fast path is based entirely on 
the machine specific process structure. It is implemented 
in assembly code, and handles the case in which the recip- 
ient process is prepared and all mappings for the necessary 
sender and recipient data pages are present in the page ta- 
bles with valid permissions. If preparation is needed, or if 
mapping entries need to be constructed, the fast path is aban- 
doned in favor of the general path. 

The general invocation path uses the processor specific 
mapping structures to avoid traversing node trees unneces- 
sarily, but falls back to node tree traversal when necessary. 
It handles certain cases omitted by the fast path - notably in- 
vocations that change the number of running processes (cre- 
ate or delete them). All cases are handled by the general 
implementation. 

4.5 Summary 
EROS stores mapping and process state in a machine-inde- 
pendent data structure: the node. This common underlying 
representation simplifies both checkpointing and storage al- 

178 



www.manaraa.com

location, and means that system resources "run out" only 
when the available disk space is exhausted. 

This state is converted on demand to the representation 
required by the hardware for efficient use. Various represen- 
tation and chaining techniques are used in lieu of conven- 
tional data structures to support invalidation and page out. 
The high-performance paths of the system operate against a 
machine-specific process structure similar to that of L4 and 
similar microkernels. 

5 System services 

Having described the kernel implementation, we can now 
sketch how these primitives are used to provide higher-level 
abstractions customarily implemented by supervisor code. 
To illustrate, we will describe the implementation of three 
basic services: the storage allocator, virtual copy memory 
objects and the process constructor. All of these services are 
implemented by application code. 

5.1 Storage allocation 
Storage allocation is performed by the space bank, which 
owns all system storage. The space bank application imple- 
ments a hierarchy of logical banks, each of which obtains 
its storage from its parent. The root of this hierarchy is the 
prime space bank. Every node and page used by an appli- 
cation is allocated from some particular space bank. The 
fact that all banks are implemented by the same process is 
not visible to client applications. The term "space bank" is 
therefore used to refer to a logical space bank. 

A space bank performs four functions: 

• It allocates nodes and pages, optionally imposing an 
allocation limit. 

• It tracks the identities (the OIDs) of the pages and 
nodes that it has allocated. 

• It ensures that all capabilities to a node or page are 
rendered invalid when the object is deallocated. 

• It provides a degree of storage locality. Objects allo- 
cated from a given bank are allocated from contiguous 
extents on the underlying disk. 

When a space bank is destroyed, objects allocated by that 
bank and all sub-banks are either deallocated or returned to 
the control of its parent bank. Space banks therefore provide 
a form of explicit storage reclamation. One way to ensure 
that a subsystem is completely dead is to destroy the space 
bank from which its storage was allocated. 

Space banks manage extents dynamically; applications 
can ensure locality of storage for two objects by creating 
per-object sub-banks, creating the objects, and then destroy- 
ing the bank without reclaiming the storage. Banks are cheap 
to create and occupy minimal storage (one node per bank). 
They are therefore well suited to region-based storage man- 
agement [2]. The unification of extent management and re- 
gion management provided by this use of space banks ex- 
tends the locality advantages of region management to per- 
manent storage. 

5.2 Virtual copy spaces 
A virtual copy space is a copy-on-write version of some 
other space. Initially, the new space consists of a single node 
containing a capability to the original object and a capability 
to a copy-on-write manager. Writes to uncopied pages in- 
duce access violations that are directed to this manager. As 
each page in the new structure is modified, read-write copies 
are made of the target page and any necessary nodes (Fig- 
ure 9). Only the modified portion of the structure is copied. 
Each copied page and node is allocated from the space bank. 
The bank is provided by the client of the virtual copy object 
when the copy is first created; storage is accounted to the 
user. 
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- - ~ read-only 
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Figure 9. Virtual copy implementation. 

To create a lazy copy of an existing memory space, the 
manager for that space is asked to freeze the space. The man- 
ager returns a constructor (Section 5.3) which will produce 
copies of the original space. Demand zero objects are real- 
ized as virtual copies of the "primordial zero space," which 
is part of the hand-constructed initial system image. 

We have previously noted that traversing the address 
space tree is expensive. The virtual copy handler reduces 
this cost by remembering the location of the last modified 
page and its containing node. If the next modified page falls 
within the same leaf node, no traversal is required. Empir- 
ically, this simple method matches common memory usage 
patterns well, and reduces the effective traversal overhead 
by a factor of 32. In the fast case, a copy-on-write page fault 
proceeds as follows: 

1. Faulting process takes an address translation fault. 
Kernel walks address space tree, locates no translation. 

2. Kernel synthesizes an upcall to the virtual copy handler 
(context switch). 

3. Virtual copy handler purchases a new page from the 
space bank, initializes it, and installs it at the appropri- 
ate offset (two context switches). 

4. Virtual copy handler returns to the faulting process, 
restarting the instruction (context switch). 

5. Faulting process takes another address translation 
fault. Kernel walks address space tree, locates a valid 
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translation, and silently restarts the faulting instruc- 
tion. 

The performance of this implementation is discussed in Sec- 
tion 6. 

5.3 Process construction 
As with virtual copies, process creation in EROS is per- 
formed by application code. Every application has an as- 
sociated "constructor" that knows how to fabricate new in- 
stances of  that application. Constructors are themselves ap- 
plications, which come from the metaconstructor. The meta- 
constructor is part of the hand-constructed initial system im- 
age. 

Constructors are trusted objects whose design purpose is 
to certify properties about the program instances they cre- 
ate. In particular, the constructor is able to tell the client 
whether the newly fabricated process has any ability to com- 
municate with third parties at the time of its creation. The 
constructor is able to perform this certification based solely 
on inspection of the program's initial capabilities, without 
inspecting its code. This means that standard utility pro- 
grams can be used on sensitive information without risk of 
information leakage. 

Figure 10. Process creation 

To build a new process (Figure 10), the client invokes a 
constructor (step 1). The constructor invokes its process cre- 
ator (2), which purchases nodes from a client-supplied space 
bank (3,4) and returns a new process (5) that initially exe- 
cutes from a constructor-supplied, read-only address space. 
When started (6) this "construction space" creates a muta- 
ble copy of the new program's executable image (either by 
copying it or by creating a virtual copy), obtaining further 
space from the space bank as needed (7,8). It transfers con- 
trol to the new process via a "swap address space and PC" 
operation. The new instance performs program specific ini- 
tialization and returns (9) directly to the client process. 

Constructors are in practice used as the standard mecha- 
nism for packaging and instantiating programs in EROS. 

6 Evaluation 

The focus of this paper is a capability system design mo- 
tivated by performance considerations. The best means of 
comparing its performance to that of other systems would be 

direct application benchmarks. EROS is new enough that ap- 
plications have not yet been ported to it, which precludes this 
comparison at this stage. We have chosen microbenchmarks 
as our means of evaluation, inspired by those of lmbench 
[34]. Each Imbench benchmark is motivated by a real per- 
formance bottleneck from some real application. We have 
examined the constituents of  lmbench and produced seman- 
tically similar tests for EROS. As EROS does not export a 
raw disk interface and does not yet have a networking im- 
plementation we have omitted such benchmarks. 

The categories of operations tested by the lmbench suite 
are relatively universal. In many cases, operations with cor- 
responding semantics are used by native EROS applications. 
One way to place the performance of EROS in context is to 
compare these operations to their nearest Linux equivalents. 
We have constructed a set of  EROS microbenchmarks to do 
so. The benchmarks are included in the EROS distribution 
[41]. 

Measurements were made on a uniprocessor 400 MHz 
Pentium II, with 192 megabytes of memory. The lmbench 
utilities report memory latencies of 7 ns, 69 ns, and 153 ns 
for the level one, level two, and main memories, respectively. 
Linux measurements, where given, are obtained from kernel 
version 2.2.5-22 on the same hardware using the standard 
lmbench distribution. The Linux kernel measured supports 
symmetric multiprocessing. Linux measurements reported 
here are made using a kernel with multiprocessing support 
compiled out. 

The results are summarized in Figure 11. The bars are 
normalized relative to the Linux timings. Except for the pipe 
bandwidth benchmark, a shorter bar represents a better re- 
sult. Actual timings and percent loss/gain are also shown. 

6.1 Kernel invocation baseline 
The "trivial system call" benchmark is intended to examine 
the minimum cost of entering and exiting the kernel while 
performing minimal work. In POSIX this is customarily 
tested with the getppidO operation (0.7 #s). The nearest 
EROS equivalent is the typeof operation on a number ca- 
pability (1.6 #s). 

The difference reflects the difference in the two system 
architectures. EROS capability invocations must test to ver- 
ify that the target object is prepared, and must allow for the 
possibility that control will be returned to some other pro- 
cess. Also, all capability invocations have the same argu- 
ment structure (Section 3.3). The trivial EROS kernel invo- 
cation therefore involves a more complex argument specifi- 
cation and a greater amount of data manipulation. The com- 
mon argument structure allows processes to transparently in- 
terpose on capability invocations, emulating the original ob- 
ject; in this case function was favored over performance in 
the design. 

6.2 Memory handling 
Two benchmarks are used to examine memory performance: 
page fault and heap growth. The page fault benchmark mea- 
sures the time to reconstruct page table entries for a memory 

180 



www.manaraa.com

Benchmark Linux-Normalized Speedup 

Pipe Latency 

Pipe Bandwidth 

Create Process 

Ctxt Switch 

Grow Heap 

Page Fault 

Trivial Syscall 

32.3% 

281 MB/s 
2 ~  MB/s 8 .07 ]  

0.664 ms] 65.3% 

5.5% 

35.7% 

]3.67/zs 
' 6 8 ~  99.5% 

Figure 11. Summary of benchmark results. For pipe 
bandwidth, larger is better. Linux Imbench results ap- 
pear in dark gray. EROS results are normalized to the 
Linux numbers, and appear in lighter gray. 

object that is valid. That is, it measures the time to convert 
from the logical mapping structures maintained by the oper- 
ating system to the hardware mapping representation. The 
benchmark constructs an object, unmaps it, remaps it, and 
then measures the time to sum the first word of each page. 
In Linux, this operation takes 687 #s per page. The cor- 
responding EROS operation takes 3.67 #s per page in the 
general case, which reflects the basic cost of the node tree 
traversal. The EROS cost rises to 5.10 #s if the fast traversal 
optimization of Section 4.2.1 is disabled. 

Linux performance on this benchmark has regressed in 
recent versions of the Linux kernel. The 2.0.34 version of 
the Linux kernel took 67 #s on this operation. 

If  the mapped object falls at a page table boundary, the 
latency under EROS falls to 0.08 #s. This is due to the page 
table sharing mechanisms described in Section 4.2.2. EROS 
preserves hardware mapping structures as long as it is feasi- 
ble to do so. For EROS, this measures a real (and common) 
case. Page tables may be shared whenever a new instance of 
an existing application is created. The effect of sharing code 
space in such cases significantly reduces application startup 
latencies. 

Experience with Mach and Chorus suggested that heap 
growth may inhibit system performance if it is slow [8, 21]. 
The POSIX design allows the operating system to grab any 
available swap page and zero it. We constructed a Linux 
benchmark using the lmbench timing framework, and deter- 
mined that growing the heap by a page takes 31.74 #s. In 
EROS, the fault must first be reflected to a user level fault 
handler which in turn must call a user level storage alloca- 
tor as described in Section 5.2, which takes 20.42 #s. The 
virtual copy handler fits within a small (address) space, al- 
lowing two of the context switches in the sequence to be 
done very cheaply (see below). 

6.3 Process management 
The EROS implementation's "performance core" is very 
similar in structure to that of L3 [30]. An earlier implemen- 
tation reported in [44] matches the performance of L3 cycle 
for cycle. The current implementation is less highly tuned. 
A directed context switch under EROS takes 1.60 #s in the 
large space case, and 1.19/zs in the case of a control transfer 
between a large space and a small space. As measured by 
lmbench, a directed context switch under Linux takes 1.26 
#s. 

These latencies do not compose in obvious ways because 
of cache interference. A round trip large-large IPC operation 
takes 3.21 #s, and a large-small round trip takes 2.38 #s, 
but a nested sequence of calls such as that seen in the page 
allocation path (large to small to large and back) takes 6.31 
#s. 

Where POSIX uses fork and exec to create new pro- 
cesses, EROS provides a direct method via the construc- 
tor. Constructors can guarantee sandboxing, and are the pre- 
ferred means of starting new program instances. While it is 
therefore the appropriate mechanism to compare, it should 
be noted that the fork/exec implementation creates an ad- 
dress space that the EROS implementation does not require. 
Creating a copy of "hello world" under Linux takes 1.916 
ms. Using a constructor to create a new copy of "hello 
world" takes 0.664 ms. 

6.4 Interprocess communication 
Finally, we examine streaming data transfer using the pipe 
benchmark. Of the available IPC options, pipes are the most 
efficient mechanism provided in Linux (8.34 #s latency, 260 
MB/sec). The EROS equivalent implements pipes using a 
process (5.66 #s, 281 MB/sec). The key point to note here 
is that for bulk data transfer the cost of context switches is 
much less important than minimizing cache misses. EROS 
pipe bandwidth is maximized using only 4 KB transfers. 
This suggests that IPC implementations which impose an 
upper bound on transfer payload do not impose an inher- 
ent inefficiency on data transfer rates. Bounding payloads 
simplifies the implementation and allows the IPC operation 
to be performed atomically. It also guarantees that any con- 
trol transfer operation can make progress given a relatively 
small amount of real memory, eliminating a memory size 
dependency at the invocation API. 

6.5 Other measurements 
While EROS is not yet running applications, previous imple- 
mentations of the architecture have been deployed with full 
application environments. An evaluation of the performance 
of KeyTXF, the KeyKOS transaction manager for the Sys- 
tem 370 implementation, is described by Frantz and Landau 
[16]. Performance on the TP1 benchmark ranged from 2.57 
to 25.7 times faster than other protected database systems, 
and scaled linearly with CPU speed if the I/O system was 
also upgraded for increased capacity. IBM's TPF was 22% 
faster (22 transactions per second vs. 18 for KeyTXF), but 
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TPF was an unprotected system; all TPF applications ran in 
supervisor mode, and were mutually trusted. 

The Motorola implementation of KeyKOS included a 
full binary-compatible POSIX emulation. A limited per- 
formance evaluation was made against Omron's Mach 2.5 
implementation (a monolithic kernel) for the same machine 
[5]. Performance was mixed, ranging from 3.89 times slower 
than Mach performance on opening and closing files to 14 
times faster on memory manipulation. The open/close result 
reflects a naive implementation, as noted in the paper. 

6.6 Performance summary  
The benchmark results are summarized graphically in Fig- 
ure 11. As can be seen, EROS performs favorably on 6 out 
of 7 benchmarks. We believe that this provides good, al- 
though obviously not complete, evidence that composition 
of protected subsystems (several of which were used in the 
EROS benchmarks) need not inhibit system performance. In 
addition, it appears that capability systems can perform well 
without resorting to specialized hardware assists. 

7 Related work 

EROS's relation to TymShare's GNOSIS [22] system was 
discussed in Section 1.1. Most of the GNOSIS architecture 
is preserved in EROS; the scheduler is a significant depar- 
ture from the GNOSIS design. Many of the design docu- 
ments and papers for the GNOSIS system (which was re- 
named KeyKOS) can be found at the KeyKOS web site [42]. 
Mach and Chorus: Both Mach [20] and Chorus [39] use 
capabilities for interprocess communication. Mach also uses 
them to name memory objects. Both use external memory 
managers. Neither externalizes storage allocation or pro- 
vides persistence, and in both cases the external memory 
manager has proven to be a source of performance difficul- 
ties [21, 8]. Both systems are hybrid designs, in that other 
system calls are present in addition to capability invocation. 
While Mach originally started with a single machJnsg sys- 
tem call, additional system calls were later added for perfor- 
mance. 

The Mach send-once port bears a close resemblance to 
the EROS resume capability. Send-once ports can be for- 
warded, but cannot be copied. The absence of special se- 
mantics for resume capabilities removes a certain amount of 
complexity from the EROS IPC path, and slightly simpli- 
fies the implementation of debuggers and capability cache 
objects. 
Amoeba: Amoeba [49, 50] is a distributed capability sys- 
tem. Unlike EROS, capabilities are protected by sparsity. 
Because capabilities are just data, language integration and 
IPC design are greatly simplified. The cost of this is that ca- 
pability transfer cannot be detected by a reference monitor. 
Mandatory access control is therefore impossible to imple- 
ment outside of the kernel, and metadata update order viola- 
tions are not detectable by the kernel. 

Amoeba does not use capabilities for fine grain system 
resource such as pages and memory mapping structures. 

Storage for mapping structures is therefore a hidden over- 
head rather than clearly accounted for. 
L3 and L4: The EROS IPC implementation was heavily 
influenced by L3 [30, 32] and Mach 4 [14]. The mechanism 
in EROS is closer to that of L3, but there are some significant 
differences. 

L3 invocation is unauthenticated; in the absence of a 
chief any process ("task" in L3-speak) may invoke any other 
process. If  required, access controls must be implemented 
by an intervening process known as a chief, doubling the 
cost of an authenticated IPC. The most recent iteration of 
Lava (the L4 successor) incorporates an IPC redirection 
mechanism that is very similar to capabilities [24]. Even 
in the newest implementation, however, capabilities are not 
transferable. Transferring an authority from one process to 
another requires interaction with the indirection table man- 
ager. 

L3 is also persistent [31], but lacks an equivalent to the 
EROS/KeyKOS consistency check. Its checkpoint mecha- 
nism is implemented outside the kernel by a memory man- 
ager that has direct access to kernel data structures. Data 
structures included in the checkpoint are allocated out of  
pageable memory. The kernel may page fault on these struc- 
tures, and is designed to recover when it does so. Because 
the kernel directly uses process structure addresses (i.e. there 
is no indirection), any change in the size of the kernel pro- 
cess table or other checkpointed kernel tables renders pre- 
vious checkpoints unusable. This is not a limitation of the 
current EROS mechanism. 
Fluke: Fluke [13] is a capability kernel that also provides 
persistence. Its hierarchical resource management mecha- 
nisms are similar to those provided by the EROS space bank 
and the meter mechanism of KeyKOS. Like L3, Fluke's per- 
sistence is implemented by a user-level pager, but its per- 
formance is unreported. Also like L3, Fluke's persistence 
mechanism lacks a consistency check. 
Cache Kernel: ' The Cache Kernel [6] uses a caching ap- 
proach in some ways similar to EROS. Where EROS writes 
operating system, objects (Processes) back to protected struc- 
tures (Nodes), the Cache Kernel writes this state back to un- 
trusted application kernels. 
Hydra and CAL/TSS: Hydra [56] and CAL/TSS are early 
software capability systems. Neither was persistent. HY- 
DRA incorporates a port-based store and forward messaging 
system, which reduces its messaging performance. CAL's 
messaging is unbuffered and portless, and provides no multi- 
cast mechanism. CAL also provides an "event" mechanism, 
allowing a bounded number of one word messages to be sent 
asynchronously to the recipient. Of the early capability sys- 
tems, the CAL design most closely resembles that of EROS. 
CAP: The Cambridge CAP computer [55] is a hardware 
capability system in which capabilities name both protec- 
tion domains and memory segments. The hardware assist 
provided by the capability cache provided adequate perfor- 
mance for large grain objects, but use of memory capabili- 
ties to describe language-grain objects (e.g., structures rather 
than pages) leads to higher-frequency dereferencing of capa- 
bilities than the hardware can effectively support. Also, the 
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incorporation of nested memory capabilities in the architec- 
ture, while not leading to in-cache complexity, considerably 
complicates capability cache miss processing. 
Intel i432: The Intel i432 [37] was originally designed 
as an ADA machine, and ultimately turned into an object- 
based hardware system. A derivative segmentation architec- 
ture can be seen today in the i386. The i432 was designed as 
a high level language machine. Architecturally, it is a very 
complex machine, and its performance suffers dramatically 
as a result [7]. 
ExOS: MIT's  Exokernel [11] provides an alternative ap- 
proach to application-level resource management. Where 
the EROS kernel exports kernel-protected entities, the exok- 
ernel architecture reorganizes critical data structures to allow 
processes direct access, and pins these structures in mem- 
ory. This approach eliminates the need for data copies in 
many cases, at the cost of exposing a more complex interface 
contract to the application. What maintainability implica- 
tions this may have for long-term compatibility as interfaces 
evolve remain unclear. Greg Ganger, one of the Exokernel 
designers, has noted that the design of generally usable in- 
terfaces in exokernel remains a challenge [17]. 

The Exokernel uses hierarchically-named credentials 
called capabilities [33], but these are not capabilities in the 
traditional sense. They do not name target objects, nor di- 
rectly authorize access, but rather contain encoded princi- 
pals that the kernel checks against access-control lists. Ex- 
okernel capabilities are more akin to an extensible uid/gid 
abstraction. 

8 Conclusion 

EROS' basic abstractions and implementation techniques 
can realize an efficient capability system on commodity 
hardware. Microbenchmark performance measurements in 
comparison with Linux are quite good. Results from other 
microkernels show that microbenchmark results do not al- 
ways translate into strong application performance. 

A full validation of our performance claim requires app- 
lication-level benchmarks. The construction of a native 
EROS execution environment is expected to take several 
people another year, after which it will be possible to per- 
form such measurements. The conclusion at this stage is that 
building such an environment is worth pursuing. Experience 
with KeyKOS [5, 16] suggests that the microbenchmark re- 
suits reported here approximately predict real system perfor- 
mance. 

The design presented here incorporates both user-level 
fault handling, which is not uncommon in modern micro- 
kernels, and, uniquely as far as we know, user-level storage 
allocation. Performance does not appear to suffer from do- 
ing so. We believe this result stems from four aspects of the 
design: 

1. The primitive abstractions implemented by the kernel 
map directly to the abstractions supported by the hard- 
ware. The "semantic gap" between the two is minimal. 

2. EROS fault handlers-  in particular memory handlers - 
are less complex than those of similarly user-managed 

designs. The memory handler is responsible for ad- 
dress validation and storage provisioning, but does not 
make decisions about paging policy or resource arbi- 
tration among competing clients. This is in contrast 
to Mach [21] and Lava, where all of these policies are 
implemented by a single piece of code. It is similar in 
this regard to Fluke [13]. 

3. While encapsulated, the kernel directly exports a 
machine-independent interface to address mapping 
structures. This allows portable memory managers to 
perform optimizations that are not possible when this 
metadata is opaque to the handler. In contrast, Exok- 
ernel's exported memory interface is machine-specific 
[11]. 

4. EROS's selection of basic abstractions enables a soft- 
ware caching design model, which in turn allows the 
implementation to use machine-dependent represen- 
tations when performance is critical and machine- 
independent representations for low-likelihood cases 
or more portable code. 

Roughly 22% of the current kernel code is Pentium- 
specific. An additional 9% relates to hierarchical page table 
management or node tree traversal, and would be reused for 
similar translation architectures, such as the Motorola 68000 
or 88000 or the Sun SPARC. 

The EROS constructor mechanism provides a basic 
building block for EROS's user-level mandatory access con- 
trol mechanism. Its correctness has been proven in [46]. 

The principal failing of capabilities is difficulty of ad- 
ministration. In the absence of a reference monitor, there is 
no direct way to say "Fred may not use this object" The 
KeySafe system [38] provides one means to do so within 
a capability framework. Mechanisms appropriate for flexi- 
ble mandatory access controls have been explored in DTOS 
[40] and Flask [48]. With EROS illustrating how to imple- 
ment capability designs efficiently on commodity hardware, 
a logical next step is to pursue unifying the two mechanisms 
efficiently. 

The EROS system currently runs on Pentium class hard- 
ware. The system is available for download from the EROS 
web site [41]. The downloadable packages include the 
benchmarks presented here. A number of groups are cur- 
rently proceeding with various enhancements of the system, 
including one that is developing a commercial product built 
on EROS. 
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